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This article investigates the effect of the fluid f low induced by an infinite rotating disk on 
the freezing of the fluid and the effect of the freezing on the transient heat transfer from 
the fluid to the disk. The Von K=Srm~n similarity solution is used for the velocity of the 
fluid. The transient behavior of the temperature distribution in both solid and liquid phases 
and the freezing rate are determined. 
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1. I n t r o d u c t i o n  

Heat transfer problems in the freezing (or melting) process have 
attracted considerable attention in view of both their theoretical 
interest and their practical applications, e.g., crystal growth, 
casting, and welding. Since the work by Stefan (Carslaw and 
Jaeger1), a great number of analytical and numerical studies 
on heat transfer problems with phase change have been 
performed to determine the temperature distributions in solid 
and stationary liquid (Muehlbauer and Sunderland2). Many 
investigators have also considered the phase-change problem 
with forced convection a-s or natural convection 6-s in the melt. 
In all the works with forced convection, as far as the present 
author is aware, the rate of convective heat transfer from the 
liquid side of the boundary of phase change was assumed to 
be known (constant), and the temperature distribution in the 
solid and the location of the solid-liquid interface were deter- 
mined. 3-s It is evident, however, that the freezing process 
can be affected by the transient development of temperature 
distribution in the liquid and vice versa. 

In this study, the freezing of an incompressible fluid in motion 
induced by an infinite rotating plane disk is considered. The 
disk is rotating slowly in its own plane with constant angular 
velocity Q. The flow is laminar; accordingly, the velocity field is 
described by the Von-Kfirm/m similarity equations (Zandbergen 
and Dijkstrag). Initially (t=0), the fluid and the disk are kept 
at a uniform temperature (Th) higher than the freezing temper- 
ature of the fluid (Tf). For t>  0, the temperature of the disk is 
lowered to Tc (T¢ < Tf) and maintained constant. The transient 
behavior ofthe temperature distribution in both solid and liquid 
phases and the freezing rate are determined. Primary attention 
is given to the growth of the solid. 

Although the present problem is very fundamental in the 
phase-change problem with forced convection, there has been 
neither theoretical nor experimental study about it, as far as 
the present author is aware. The present problem has two 
notable aspects of fundamental research: (1) if there is no fluid 
flow, then it reduces to the well-known Neumann problem 
(Carslaw and Jaeger~), and (2) if no phase change is present, 
then it becomes the problem of transient heat transfer in 
the rotating-disk-revolving-fluid system (Olanderl°). In the 
practical aspect, the present work is related to the Czochralski 
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growth, 11-15 where the crystal is rotated slowly to obtain 
homogeneous crystal from melt. 

In Section 2, the governing equations and the boundary 
conditions are presented. We can obtain similarity Equations 
7-11. Some analytic expressions and numerical methods used 
are described in Section 3. Section 4.1 displays the results for 
the effect of the fluid flow on the growth of solid. The results 
for the heat transfer problem in the rotating-disk-revolving- 
fluid system with phase change are presented in Section 4.2. 

2. F o r m u l a t i o n  of  the  prob lem 

The physical system considered is shown in Figure 1. The 
thermophysical properties of solid and liquid phases are assumed 
constant, and the density change of the material upon freezing 
is neglected so that there is no fluid flow induced by the 
volumetric change in the phase-change process. 1-8 The thickness 
of the solidified layer X(t) is assumed not to vary spatially, since 
the temperature distribution in the liquid phase can be con- 
sidered one-dimensional (l-D). 1°-16 From the exact solution 
of Neumann, 1 we know that the solid grows very slowly. On 
the other hand, even the fluid flow induced by the impulsive 
rotating of the disk initially at rest approaches its asymptotic 
steady state after only about 2 radians of the disk's motion 
(BentonZT). Thus, we assume that the fluid flow is steady and 
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is not influenced by the movement of the solid-liquid interface. 
Under these assumptions, the flow field is described by the 
Von-K/trmhn similarity solution. 

The temperature distribution in the liquid phase (T0 is 
governed by 

3TI dTl c~2Tj 
~t ~-w(z-X(t)) &=al &2 (1) 

where w(z) denotes the velocity component in the direction 
normal to the disk. Numerical values of w(z) are given by 
Benton. 17 

w(z) = (vf~)l/2n((); ¢ = (~/v)l/2z (2) 

H(0) = H'(0) = 0, H"(0) = - 1.0205 

H(~)-~ c{ - I +2.364 e x p ( - c ¢ ) -  1.880 e x p ( - 2 c ¢ ) + - . .  }, 
as  ~ -=} oo 

c = 0.88447 

In the solid phase, the temperature distribution (T~) is 
described by 

OT~ ¢32T~ 
- - = a  s - -  (3) 
(~t t~Z 2 

At the solid-liquid interface z=X(t) ,  where the change of 
state occurs, the energy balance is maintained: 

OT, OT, dX 
K~ ~zz----K, ~z = p t  ~ (4) 

Additional boundary conditions for T~ and T 1 are 

T ~ = T ~ a t z = O , T ~ = T l = T f a t z = X ( t ) , T l ~ T h a S Z ~ O O  (5) 

Let us introduce following dimensionless variables: 

z=Qt, ~=z/X(t), 
O~=(T,- T~)/(Tf- Tc), 01=(T,-  Th)/(Tf- Th), (6) 

K, = KdKI, ~, "~" ~ $ / a l ,  Pr = v/% 

O r = ( T  h --  T f ) / ( T f -  To) , Ste = cs(Tr- T ~ ) / L  

Equations 1 and 3 are rewritten as 

h2 ~0~ tl dh 2 ~0~ ~20 s 

& 2 dr &l G @2 (7) 

001 r l dh~ 001 hE & 2 dz Oq ~-PrX/2"h"H{Pr-I/2(rl-1)h'} ~301-~2010q dq 2 (8) 

where 

hs(z ) = (f~/al)l/2X(t) (9) 

denotes the dimensionless thickness of the frozen layer. It is 
assumed that h~(0)=0. 

Boundary conditions (4) and (5) are transformed: 

30 s O~ 301 1 dh 2 
4 - at t/= 1 (10) 

&/ K~ &/ 2a~Ste dz 

0 ~ = 0 a t q = 0 ,  0 ~ = 0 , = l a t r / = l ,  01--* 0 as t/ --* oo. (11) 

Note that 0~/K~ is a parameter in the governing Equations 7-11, 
because the heat transfer rate is determined by Fourier's law 
of heat conduction. 

3. Analysis 

At the initial stage of freezing (z<< 1), 0,,,(z, q) and hs(z) can be 
expanded as follows: 

0sa(t/) + 0~,,(t/R + . . .  (12) 0s,l(T ' /1 )=  0 1 3/2 

h~(z) = boz + bl ~ 75/2 + ' '  ' (13) 

For small z, the temperature front at which 0~=0 (=0o~) is 
near the interface, and thus the velocity field in the liquid is 
approximated: 

n(~)=n"(O)¢2/2 (14) 

Substitution of Equations 12-14 into Equations 7-11 yields 

Notation 

be,  b l  

C1,  C2,  C3,  C4 
c 

Cs 
erf 
erfc 
n(¢) 

hs(z) 

heq 
K 
Kr 
L 
Log(x) 
Nu 
NUss 
Pr 
Ste 
T 
Tc, Tf, Th 

w(z) 

Constants in Equation (13) 
Constants in Equations (29) and (30) 
Magnitude of the velocity of fluid at z ~ 
Specific heat of solid 
Error function 
Complementary error function 
Dimensionless axial velocity component of 
fluid 
Dimensionless thickness of frozen layer, 
(fV~31/2X(t) 
Steady-state value of h~(z) 
Thermal conductivity 
Ratio of thermal conductivity, Ks/K t 
Latent heat 
Loglo(X) 
Nusselt number, ~901/c3¢ at the interface 
Nusselt number in steady state 
Prandtl number, vial 
Stefan number, cs(T f -  T¢)/L 
Temperature 
Cold, freezing, and hot temperature, 
respectively 
Axial velocity component of fluid 

x(t) 
Xeq 
g 

Greek symbols 
~t 

~r 

Ol 

Os 

O~ 
V 

P 
ff 

T 

Subscripts 
1 
S 
"9 

Thickness of frozen layer 
Steady-state value of X(t) 
Axial coordinate 

Thermal diffusivity 
Ratio of thermal diffusivity, as/Cq 
Dimensionless axial coordinate, (Q/v)l/2z 
Dimensionless coordinate, z/X(t) 
Dimensionless temperature in liquid, 
(T= - Th)/(T f -  Th) 
Dimensionless temperature in solid, 
(T s - Tc)/(Tf- T~) 
Ratio of temperature, (Th-- Tf)/(Tf- T¢) 
Kinematic viscosity of liquid 
Density, p, = Pl = P 
Growth parameter in Neumann problem 
Dimensionless time, f~t 
Angular velocity of rotating disk 

Liquid 
Solid 
Infinity 
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O(z °) equations 

d 20° __b° dO°=o 
dq 2 F2~rq dq at 0 < q < l  (15) 

d20°  b° dO° 0 
dr/2 t--~- r/--~q = at r /> l  (16) 

dO ° o, dO ° bo 
- - =  at r/=1 (17) 

dr/ K, dr/ 2ct,Ste 

0°(0)=0, 0°(1)=0°(1)=1, 0°(oo)=0 (18) 

and O(z 3/2) equations 

d20~ b o dO~ 3b 0 5bl dO ° 
dr/2 +~rOtrr/ dr/ 20trOSt=--~-r /~-q a t 0 < r / < l  (19) 

d2Od+bo dO~ 3bo,~1 [-H"(0) 12 5bl ]dO ° 
dr/2 2 ~ / ~ - q - 2  -t~l =L  2 Pr-1/2b3/2(~/- ) - 4 - - r /  ~-q 

a t r / > l  (20) 

dO:+ O, dO t 5b I 
at r/= 1 (21) 

dr/ K, dr/ 4ct~Ste 

0~(0) = 0,~(1) = 0~(1) = 01 too)= 0 (22) 

The solution of Equations 15-18 is the well-known Neumann 
solution.l 

O°(r/) = eft(ar/)/eft(a ) (23) 

O°(q ) = eftc(o.~x: /2r/ )/eftc(o.~xx, /2 ) (24) 

exp(--o. 2) 0r~rl/2exp(--o.2Ctr) 7tl/20. 
- - -  ( 2 5 )  

eft(o.) Kr erfc(o.~t~/2) Ste 

bo = 40"2Ctr (26) 

The solution of Equations 19-22 is found with a homogeneous 
solution of the form 

3 
0t h(r/) = r/3 + ~ a  2 r/= Us(r/) (27) 

olh(/'/) = r/3 "~ 2~2~ r r/=/gl(r/) (28) 

This gives 
/ r/5 q3 "~ 

~1 blClt5+~a2 ) 
O~(r/)=--U,(r/) exp(o.2r/2)u2(r/) dr/ (29) 

[r/5 r/a \ f,, c . , . , +   ,c tx+ c ,  
0~(q)=ut(r/) exp(o.2=rr/2)u~(r/) dr/ (30) 

where 

Cl "= -- (50")/{2/l:l/2tXr eft(o.)} 
C 2 = (5o.Otrt/2)/{2n: 1/2 erfc(o.lXrl/2)} 
C3 = - {8H"(O)o.'=2,}/{r:/2pr "2 eftc(o.=,t/2)} 

f ( "  r/6 2 5 1 (  3 ~ ,  1 3 3 r/2 r/+a 
40" 0t r 

The remaining unknowns C,, and b, are determined by boundary 
condition (21) and 011(m)=0. It is readily seen that 

bt = F(ct~, OffK, Ste) x (Pr)-  1/2 (31 ) 

The processes are straightforward, and the detailed equations 
are omitted for brevity. 

Effect of fluid flow on fluid freezing: J. S. Yoo 

For large time, the solution of Equations 1-5 is obtained 
numerically. There are several numerical methods for the 
moving boundary problems? s Two completely different 
methods, namely, the enthalpy method (Voller and Cross 19) 
and the method using body-fitted coordinates (Sparrow et 
al.2°), were tested. The accuracy of the numerical schemes was 
checked with the exact solution of Neumann and the steady- 
state solution of Equations 1-5. The enthalpy method yielded 
accurate solutions for small time, but not for large time, as 
Bell zl pointed out. On the other hand, the method using 
body-fitted coordinates yielded accurate solutions up to very 
long time and was very efficient, since it allowed large time 
steps. In solving the Neumann problem, agreement with the 
exact solution to within 0A% was attained for the thickness 
of the frozen layer X(t); when there was fluid flow, the solution 
approached the exact steady-state solution as time went on. 
The governing Equations 7-11 that were obtained by a dimen- 
sionless coordinate q=z/X(t) were solved with this method. 
The moving boundary was fixed at r/= 1 for all times. And in 
the numerical procedure, the dimensionless time z '=  (Ste/Pr)~ 
made it easy to choose time steps. One hundred grid points 
were developed uniformly throughout the solid region, and 500 
grid points were developed nonuniformly throughout the liquid 
region according to the relation r/i = 1 + (r/~ - 1 ){( i-  1 )/499} l.~. 
An implicit finite-difference scheme was used for the energy 
Equations 7 and 8, and explicit representation was used for the 
interracial energy balance (Equation 10). The resulting difference 
equations for the temperature distribution 0s and 01 were solved 
noniteratively at each time step by using the tridiagonal matrix 
algorithm. And h, and dhs/d¢ were determined from Equation 
10 with the method used by Sparrow et alfl ° 

4. R e s u l t s  a n d  d i s c u s s i o n  

4.1. Effect  o f  f l u id  f l o w  on the g r o w t h  o f  sol ids 

At the initial stage of freezing, the thickness of the frozen layer 
is approximated as h2~(z)=bor+b:5/2+..., where the first 
term represents the pure conduction solution of Neumannl and 
the second represents the effect of the fluid flow. Calculation 
shows that bl has negative values in all cases considered. The 
magnitude of (bl/bo) is increased as Ste or O,/K, becomes large. 
This reveals that as initial liquid temperature (Th), conductivity 
of the liquid, or Stefan number becomes larger, the growth of 
the solid is more strongly inhibited by the fluid flow. And bl 
is proportional to Pr-1/2 from Equation 31. Thus the effect of 
the fluid flow on the growth of the solid is decreased as the 
viscosity of the fluid increases. This is because the thickness of 
the velocity boundary layer is proportional to v 1/2. 

As time goes on, hs(z) increases monotonously and approaches 
the steady-state value hcq (Figure 2a). The growth rate of the 
solid is increased as ~, or Ste becomes large, but is decreased 
as OffK, or Pr becomes large. The effect of the solid rotation 
(Q) on the growth of the solid can be seen with the dimensional 
variables t =  (~/f~) and X(t)= (cq/fl)1/Zh,(~). To see this effect, 
an example problem was devised with the thermophysical 
properties of the silicon used in the Czochralski growth. Figure 
2a represents the dimensionless solid length h,(z) as a function 
of dimensionless time z, and Figure 2b was obtained from this 
result. The curve of t ) =  0 represents the growth of the solid 
when there is no fluid flow, and other curves clearly show the 
effect of the solid rotation (f~) on the growth of the solid. That 
is, the fluid flow induced by the solid rotation (f~) strongly 
inhibits the freezing of the fluid. This is also demonstrated with 
the approximate solution for small time. Equation 13 yields 

X(t) = 20.(o~st)1/2{ 1 -- Ibl/2bol(f~t) a/2} (32) 

Int. J. Heat and Fluid Flow, Vol. 12, No. 3, September 1991 259 



Effect of fluid flow on fluid freezing: J. S. Yoo 

2.5 

2 ,  

1.5 

0.5- 

 =0y 

/ j  
f 

{3=2.  

O .  i i i i 1 1 1 1 1  l l l l l l l l l  
0 200 400 

5 

/ / 
f 

f 

t l l l l l l l l  
600 

t (see) 
(b) 

Q=0.5 
. _ _ _ _ . - - - - - -  

~=1 .  

I I I I I I I I I  I I I I F I I l l  

800 1000 

f 

4 f 

J heq =4.89 
3 / 

1 

0 i i i i i i i i I i i i i i i i i i i i i i i i i i i I I [ I I I I I I I I I I I I I I I 

0 200 400 600 800 1000 
3,  
(a) 

Figure 2 Growth of solid as a function of time. The material for 
this example is silicon, whose approximate thermophysical properties 
near the freezing temperature Tf= 1685(K) are c ,=  1 (J/g. K), K ,=  
0.22(W/cm. K), K~ = 0.32(W/cm. K), L = 1800(J/g), ct, = O.088(cm=/s), 
ct~=O.128(cm2/s), and Pr=O.02. Cold and hot temperatures are 
taken as T,=1500(K)  and T,=1900(K) ,  respectively. (a) Dimen- 
sionless solid length (h,(z)) as a function of dimensionless time (z); 
(b) dimensional solid length (X(t)) as a function of dimensional 
time (t) for several angular velocities. Unit of f~ is rad/s 

In the Neumann problem, 1 there is no steady state, and the 
solid grows continuously with time according to the relation 
X(t)=2a(cqt) 1/2. In the present problem, however, the fluid 
flow restricts the propagation of the thermal boundary in the 
liquid; accordingly, the system approaches a final equilibrium 
state (steady state) as time goes on. Equations 1-5 with d/dt = 0  
give the steady state. The steady-state thickness of the frozen 
layer Xoq is found from the energy balance at the interface 
(Equation 4). This gives 

Xeq= -(K,/O~).(v/~)'/2/( do1 ~ (33) 
/\d~ interface/] 

Thus Xeq is proportional to Q-1/2.  For the limiting case of 
t ) - , 0  or 0r- ,0 ,  the solution becomes identical to that of 
Neumann (Xeq --' oo). 

Many investigators 3-5 considered the freezing of fluid in 
forced flow with a given rate of convective heat transfer from 
the liquid side of the solid-liquid interface. In Figure 3, the 
time required to reach hs/heq=0.95 and that required to reach 
Nu/Nu , ,=  1.05 (Nu=a01/d~ at the interface) are shown as 
functions of Ste and Or/K, These results show that for small 
Ste or Or/K . the Nusselt number reaches its quasi-steady-state 
value much faster than h~(z), and thus we can consider it to be 
constant, Nu(t)~-Nu,~, throughout the freezing process. How- 
ever, for large Ste or OJK, the transient behavior of Nu(t) 
should be considered. 

4.2. Effect o f  phase change on the heat transfer 
problem in the rotat ing-d isk-revolv ing- f lu id system 

The transient heat transfer behavior in the rotating-disk-- 
revolving-fluid system without phase change was considered by 
a few authors. 1°'16 However, if the temperature imposed on 
the disk is lower than the freezing temperature of the fluid, the 
fluid close to the disk would freeze. When there are such phase 
changes, the time evolution of Nusselt numbers for Pr=0.01,  
0.1, 1, 10, and 100 is shown in Figure 4. The transient behavior 
is similar to that observed when there is no phase change, but 
it takes a little longer time to reach the same value of Nu/Nuss 
than the case with no phase change (Olanderl°). In Figure 5, 
the time required to reach Nu/Nu,,= 1.05 is given for some 
Stefan numbers as a function of Prandtl number. Curve (a) 
represents the case without phase change (Olanderl°). When 
phase change is present, it takes a longer time to reach the 
quasi-steady state (Nu/Nu,  = 1.05) than when there is no phase 
change. This is because the freezing of the fluid hinders the 
propagation of the thermal boundary from the interface to the 
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Figure 3 Time (z) required to reach h, (Q/h ,q=0 .95  (1) and that 
to reach Nu(~)/Nu=,= 1.05 (2). (a) (0,/K,)--dependency, with ~(,= 
Pr = 1, Ste = 0.1 ; (b) ( S t e ) ~ e p e n d e n c y ,  with 0{ r = ~ r / K r  = Pr = I 
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GO 
O~ 

0 

- 1  0 1 2 3 4 

Log(T) 
Figure 4 Transient heat transfer (Nu(~)/Nu=) from the liquid side 
of sol id- l iquid interface for Pr=0.01,  0.1, 1, 10, and 100 wi th 
C<, = O , / K  r = 1 ,  Ste  = O. 1 

liquid region. The time required to reach the quasi-steady state 
becomes longer as the Stefan number  becomes larger. 

5. Concluding remark 

The rotat ion (Q) of a solid strongly inhibits the freezing of fluid, 
since the fluid flow induced by the solid rotation transports 
hot fluid toward the solid-l iquid interface where phase change 
occurs. As Ste or  O,/K, becomes larger, the freezing of the fluid 
is more strongly inhibited by the fluid flow. For  small Ste or 
O,/Kr, the rate of heat transfer from the liquid side of the 
solid-l iquid interface can be considered constant (Nu = Nu~) 
throughout  the freezing process, but  for large Ste or O,/K,, the 
transient behavior of it should be considered. As Ste becomes 
larger, the time required to reach quasi-steady state (Nu/Nu, ,  = 
1.05) becomes longer. 
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